cgv
Loading...
Searching...
No Matches
intersection.h
1#pragma once
2
3#include "functions.h"
4#include "fvec.h"
5#include "pose.h"
6#include "fray.h"
7#include <limits>
8
10namespace cgv {
11namespace math {
12
22template <typename T>
23int ray_box_intersection(const fray<T, 3>& ray, fvec<T, 3> extent, fvec<T, 2>& out_ts, fvec<T, 3>* out_normal = nullptr) {
24 fvec<T, 3> m = fvec<T, 3>(T(1)) / ray.direction; // could be precomputed if traversing a set of aligned boxes
25 fvec<T, 3> n = m * ray.origin; // could be precomputed if traversing a set of aligned boxes
26 fvec<T, 3> k = abs(m) * extent;
27 fvec<T, 3> t1 = -n - k;
28 fvec<T, 3> t2 = -n + k;
29 T t_near = std::max(std::max(t1.x(), t1.y()), t1.z());
30 T t_far = std::min(std::min(t2.x(), t2.y()), t2.z());
31
32 if(t_near > t_far || t_far < T(0))
33 return 0;
34
35 out_ts[0] = t_near;
36 out_ts[1] = t_far;
37
38 if(out_normal)
39 *out_normal = -sign(ray.direction)
40 * step(fvec<T, 3>(t1.y(), t1.z(), t1.x()), fvec<T, 3>(t1.x(), t1.y(), t1.z()))
41 * step(fvec<T, 3>(t1.z(), t1.x(), t1.y()), fvec<T, 3>(t1.x(), t1.y(), t1.z()));
42
43 return 2;
44}
45
55template <typename T>
56int ray_box_intersection(const fray<T, 3> &ray, const fvec<T, 3> &min, const fvec<T, 3> &max, fvec<T, 2>& out_ts) {
57 fvec<T, 3> t0 = (min - ray.origin) / ray.direction;
58 fvec<T, 3> t1 = (max - ray.origin) / ray.direction;
59
60 if(t0.x() > t1.x())
61 std::swap(t0.x(), t1.x());
62
63 if(t0.y() > t1.y())
64 std::swap(t0.y(), t1.y());
65
66 if(t0.z() > t1.z())
67 std::swap(t0.z(), t1.z());
68
69 if(t0.x() > t1.y() || t0.y() > t1.x() ||
70 t0.x() > t1.z() || t0.z() > t1.x() ||
71 t0.z() > t1.y() || t0.y() > t1.z())
72 return 0;
73
74 T t_near = std::max(std::max(t0.x(), t0.y()), t0.z());
75 T t_far = std::min(std::min(t1.x(), t1.y()), t1.z());
76
77 if(t_near > t_far)
78 std::swap(t_near, t_far);
79
80 out_ts[0] = t_near;
81 out_ts[1] = t_far;
82
83 return 2;
84}
85
97template <typename T>
98int ray_cylinder_intersection(const fray<T, 3>& ray, const fvec<T, 3>& position, const fvec<T, 3>& axis, T radius, T& out_t, fvec<T, 3>* out_normal = nullptr) {
99 fvec<T, 3> oc = ray.origin - position;
100 T caca = dot(axis, axis);
101 T card = dot(axis, ray.direction);
102 T caoc = dot(axis, oc);
103 T a = caca - card * card;
104 T b = caca * dot(oc, ray.direction) - caoc * card;
105 T c = caca * dot(oc, oc) - caoc * caoc - radius * radius * caca;
106 T h = b * b - a * c;
107
108 if(h < T(0))
109 return 0;
110
111 h = std::sqrt(h);
112 out_t = (-b - h) / a;
113
114 // body
115 T y = caoc + out_t * card;
116 if(y > T(0) && y < caca) {
117 if(out_normal)
118 *out_normal = (oc + out_t * ray.direction - axis * y / caca) / radius;
119 return 1;
120 }
121
122 // caps
123 out_t = ((y < T(0) ? T(0) : caca) - caoc) / card;
124 if(std::abs(b + a * out_t) < h) {
125 if(out_normal)
126 *out_normal = axis * sign(y) / caca;
127 return 1;
128 }
129
130 return 0;
131}
132
144template <typename T>
145int ray_cylinder_intersection2(const fray<T, 3>& ray, const fvec<T, 3>& start_position, const fvec<T, 3>& end_position, T radius, T& out_t, fvec<T, 3>* out_normal = nullptr) {
146 return ray_cylinder_intersection(ray, start_position, end_position - start_position, radius, out_t, out_normal);
147}
148
158template <typename T>
159int ray_plane_intersection(const fray<T, 3>& ray, const fvec<T, 3>& origin, const fvec<T, 3>& normal, T& out_t) {
160 T denom = dot(normal, ray.direction);
161 if(std::abs(denom) < std::numeric_limits<T>::epsilon())
162 return 0;
163
164 out_t = dot(origin - ray.origin, normal) / denom;
165 return 1;
166};
167
179template <typename T>
180int ray_axis_aligned_rectangle_intersection(const fray<T, 3>& ray, const fvec<T, 3>& position, const fvec<T, 2>& extent, int axis_index, T& out_t, fvec<T, 2>* out_uv = nullptr) {
181 assert(axis_index >= 0 && axis_index < 3);
182
183 fvec<T, 3> normal = { T(0) };
184 normal[axis_index] = T(1);
185
186 T t = std::numeric_limits<T>::max();
187 if(ray_plane_intersection(ray, position, normal, t)) {
188 fvec<T, 3> intersection_position = ray.position(t);
189 intersection_position -= position;
190
191 vec2 uv;
192 switch(axis_index) {
193 case 0:
194 uv[0] = intersection_position[1];
195 uv[1] = intersection_position[2];
196 break;
197 case 1:
198 uv[0] = intersection_position[0];
199 uv[1] = intersection_position[2];
200 break;
201 case 2:
202 uv[0] = intersection_position[0];
203 uv[1] = intersection_position[1];
204 break;
205 default:
206 return 0;
207 }
208
209 uv += T(0.5) * extent;
210
211 if(uv[0] >= T(0) && uv[0] <= extent.x() && uv[1] >= T(0) && uv[1] <= extent.y()) {
212 out_t = t;
213 if(out_uv)
214 *out_uv = uv / extent;
215 return 1;
216 }
217 }
218
219 return 0;
220}
221
234template <typename T>
235int ray_parallelogram_intersection(const fray<T, 3>& ray, const fvec<T, 3>& origin, const fvec<T, 3> edge_u, const fvec<T, 3>& edge_v, T& out_t, fvec<T, 3>* out_normal = nullptr, fvec<T, 2>* out_uv = nullptr) {
236 fvec<T, 3> normal = normalize(cross(edge_u, edge_v));
237
238 T sf = T(0);
239 int ku = 0;
240 int kv = 1;
241
242 // decide on best projection plane based on projected surface area
243 //area in xy plane
244 T axy = edge_u.x() * edge_u.x() + edge_u.y() * edge_u.y();
245 axy *= edge_v.x() * edge_v.x() + edge_v.y() * edge_v.y();
246
247 //area in xz plane
248 T axz = edge_u.x() * edge_u.x() + edge_u.z() * edge_u.z();
249 axz *= edge_v.x() * edge_v.x() + edge_v.z() * edge_v.z();
250
251 //area in yz plane
252 T ayz = edge_u.y() * edge_u.y() + edge_u.z() * edge_u.z();
253 ayz *= edge_v.y() * edge_v.y() + edge_v.z() * edge_v.z();
254
255 if(axy > axz) {
256 if(axy > ayz) {
257 //xy
258 ku = 0;
259 kv = 1;
260 sf = normal.z() < T(0) ? T(1) : -T(1);
261 } else {
262 //yz
263 ku = 1;
264 kv = 2;
265 sf = normal.x() < T(0) ? T(1) : -T(1);
266 }
267 } else {
268 if(axz > ayz) {
269 //xz
270 ku = 0;
271 kv = 2;
272 sf = normal.y() < T(0) ? -T(1) : T(1);
273 } else {
274 //yz
275 ku = 1;
276 kv = 2;
277 sf = normal.x() < T(0) ? T(1) : -T(1);
278 }
279 }
280
281 T ndd = dot(normal, ray.direction);
282 if(std::abs(ndd) < std::numeric_limits<T>::epsilon())
283 return 0;
284
285 T t = dot(normal, origin - ray.origin) / ndd;
286
287 //ray intersects plane
288 //now test if hitpoint is inside parallelogram
289 fvec<T, 3> x = ray.position(t);
290 fvec<T, 2> x2d(x[ku] - origin[ku], x[kv] - origin[kv]);
291
292 fvec<T, 2> e1(edge_u[ku], edge_u[kv]);
293 fvec<T, 2> e2(edge_v[ku], edge_v[kv]);
294
295 T s = e1.x() * x2d.y() - e1.y() * x2d.x();
296 if(sf * s > -std::numeric_limits<T>::epsilon())
297 return 0;
298
299 s = e2.x() * x2d.y() - e2.y() * x2d.x();
300 if(sf * s < std::numeric_limits<T>::epsilon())
301 return 0;
302
303 x2d -= (e1 + e2);
304
305 s = e1.y() * x2d.x() - e1.x() * x2d.y();
306 if(sf * s > -std::numeric_limits<T>::epsilon())
307 return 0;
308
309 s = e2.y() * x2d.x() - e2.x() * x2d.y();
310 if(sf * s < std::numeric_limits<T>::epsilon())
311 return 0;
312
313 out_t = t;
314
315 if(out_normal)
316 *out_normal = normal;
317
318 if(out_uv) {
319 fvec<T, 2> uv = x2d;
320 uv.x() /= length(e1);
321 uv.y() /= length(e2);
322 *out_uv = uv;
323 }
324
325 return 1;
326};
327
340template <typename T>
341int ray_rectangle_intersection(const fray<T, 3>& ray, const fvec<T, 3>& position, const fvec<T, 2> extent, const quaternion<T>& rotation, T& out_t, fvec<T, 3>* out_normal = nullptr, fvec<T, 2>* out_uv = nullptr) {
342 // define tangent and bitangent assuming the normal is (0, 1, 0) without rotation
343 fvec<T, 3> tangent = { T(1), T(0), T(0) };
344 fvec<T, 3> bitangent = { T(0), T(1), T(0) };
345
346 tangent = rotation.apply(tangent);
347 bitangent = rotation.apply(bitangent);
348
349 fvec<T, 3> corner = position - T(0.5) * extent.x() * tangent - T(0.5) * extent.y() * bitangent;
350
351 fvec<T, 3> edge_u = extent.x() * tangent;
352 fvec<T, 3> edge_v = extent.y() * bitangent;
353
354 return ray_parallelogram_intersection(ray, corner, edge_u, edge_v, out_t, out_normal, out_uv);
355};
356
366template <typename T>
367int ray_sphere_intersection(const fray<T, 3>& ray, const fvec<T, 3>& center, T radius, fvec<T, 2>& out_ts) {
368 fvec<T, 3> d = ray.origin - center;
369 T il = T(1) / dot(ray.direction, ray.direction);
370 T b = il * dot(d, ray.direction);
371 T c = il * (dot(d, d) - radius * radius);
372 T D = b * b - c;
373
374 if(D < T(0))
375 return 0;
376
377 if(D < std::numeric_limits<T>::epsilon()) {
378 out_ts = -b;
379 return 1;
380 }
381
382 D = std::sqrt(D);
383 out_ts[0] = -b - D;
384 out_ts[1] = -b + D;
385
386 return 2;
387}
388
399template <typename T>
400int first_ray_sphere_intersection(const fray<T, 3>& ray, const fvec<T, 3>& center, T radius, T& out_t, fvec<T, 3>* out_normal = nullptr) {
401 fvec<T, 2> ts;
402 int k = ray_sphere_intersection(ray, center, radius, ts);
403
404 if(k == 1 || (k == 2 && ts[0] > T(0)))
405 out_t = ts[0];
406 else if(k == 2 && ts[1] > T(0))
407 out_t = ts[1];
408 else
409 return 0;
410
411 if(out_normal)
412 *out_normal = normalize(ray.position(out_t) - center);
413
414 return 1;
415}
416
427template <typename T>
428int ray_torus_intersection(const fray<T, 3>& ray, T large_radius, T small_radius, T& out_t, fvec<T, 3>* out_normal = nullptr) {
429 T po = T(1);
430 T Ra2 = large_radius * large_radius;
431 T ra2 = small_radius * small_radius;
432 T m = dot(ray.origin, ray.origin);
433 T n = dot(ray.origin, ray.direction);
434 T k = (m + Ra2 - ra2) / T(2);
435 T k3 = n;
436 const fvec<T, 2>& ro_xy = reinterpret_cast<const fvec<T, 2>&>(ray.origin);
437 const fvec<T, 2>& rd_xy = reinterpret_cast<const fvec<T, 2>&>(ray.direction);
438 T k2 = n * n - Ra2 * dot(rd_xy, rd_xy) + k;
439 T k1 = n * k - Ra2 * dot(rd_xy, ro_xy);
440 T k0 = k * k - Ra2 * dot(ro_xy, ro_xy);
441
442 if(std::abs(k3 * (k3 * k3 - k2) + k1) < T(0.01)) {
443 po = T(-1);
444 T tmp = k1; k1 = k3; k3 = tmp;
445 k0 = T(1) / k0;
446 k1 = k1 * k0;
447 k2 = k2 * k0;
448 k3 = k3 * k0;
449 }
450
451 T c2 = k2 * T(2) - T(3) * k3 * k3;
452 T c1 = k3 * (k3 * k3 - k2) + k1;
453 T c0 = k3 * (k3 * (c2 + T(2) * k2) - T(8) * k1) + T(4) * k0;
454 c2 /= T(3);
455 c1 *= T(2);
456 c0 /= T(3);
457 T Q = c2 * c2 + c0;
458 T R = c2 * c2 * c2 - T(3) * c2 * c0 + c1 * c1;
459 T h = R * R - Q * Q * Q;
460
461 if(h >= T(0)) {
462 h = std::sqrt(h);
463 T v = sign(R + h) * std::pow(std::abs(R + h), T(1) / T(3)); // cube root
464 T u = sign(R - h) * std::pow(std::abs(R - h), T(1) / T(3)); // cube root
465 fvec<T, 2> s = fvec<T, 2>((v + u) + T(4) * c2, (v - u) * std::sqrt(T(3)));
466 T y = std::sqrt(T(0.5) * (length(s) + s.x()));
467 T x = T(0.5) * s.y() / y;
468 T r = T(2) * c1 / (x * x + y * y);
469 T t1 = x - r - k3; t1 = (po < T(0)) ? T(2) / t1 : t1;
470 T t2 = -x - r - k3; t2 = (po < T(0)) ? T(2) / t2 : t2;
471
472 if(t1 > T(0)) out_t = t1;
473 if(t2 > T(0)) out_t = std::min(out_t, t2);
474
475 if(out_normal) {
476 fvec<T, 3> pos = ray.position(out_t);
477 *out_normal = normalize(pos * ((dot(pos, pos) - ra2) * fvec<T, 3>(T(1)) - Ra2 * fvec<T, 3>(T(1), T(1), T(-1))));
478 }
479
480 return 1; // 2
481 }
482
483 T sQ = std::sqrt(Q);
484 T w = sQ * cos(acos(-R / (sQ * Q)) / T(3));
485 T d2 = -(w + c2);
486
487 if (d2 < T(0))
488 return 0;
489
490 T d1 = std::sqrt(d2);
491 T h1 = std::sqrt(w - T(2) * c2 + c1 / d1);
492 T h2 = std::sqrt(w - T(2) * c2 - c1 / d1);
493 T t1 = -d1 - h1 - k3; t1 = (po < T(0)) ? T(2) / t1 : t1;
494 T t2 = -d1 + h1 - k3; t2 = (po < T(0)) ? T(2) / t2 : t2;
495 T t3 = d1 - h2 - k3; t3 = (po < T(0)) ? T(2) / t3 : t3;
496 T t4 = d1 + h2 - k3; t4 = (po < T(0)) ? T(2) / t4 : t4;
497
498 if (t1 > T(0)) out_t = t1;
499 if (t2 > T(0)) out_t = std::min(out_t, t2);
500 if (t3 > T(0)) out_t = std::min(out_t, t3);
501 if (t4 > T(0)) out_t = std::min(out_t, t4);
502
503 if(out_normal) {
504 fvec<T, 3> pos = ray.position(out_t);
505 *out_normal = normalize(pos * ((dot(pos, pos) - ra2) * fvec<T, 3>(T(1)) - Ra2 * fvec<T, 3>(T(1), T(1), T(-1))));
506 }
507
508 return 1; // 4
509}
510
523template <typename T>
524int ray_torus_intersection(const fray<T, 3>& ray, const fvec<T, 3>& center, const fvec<T, 3>& normal, T large_radius, T small_radius, T& out_t, fvec<T, 3>* out_normal = nullptr) {
525 // compute pose transformation
526 fmat<T, 3, 4> pose;
527 pose_position(pose) = center;
528 fvec<T, 3>& x = reinterpret_cast<fvec<T, 3>&>(pose[0]);
529 fvec<T, 3>& y = reinterpret_cast<fvec<T, 3>&>(pose[3]);
530 fvec<T, 3>& z = reinterpret_cast<fvec<T, 3>&>(pose[6]);
531 z = normal;
532 x = normal;
533 int i = std::abs(normal[0]) < std::abs(normal[1]) ? 0 : 1;
534 i = std::abs(normal[i]) < std::abs(normal[2]) ? i : 2;
535 x[i] = T(1);
536 y = normalize(cross(normal, x));
537 x = cross(y, normal);
538
539 fray<T, 3> transformed_ray;
540 transformed_ray.origin = inverse_pose_transform_point(pose, ray.origin);
541 transformed_ray.direction = inverse_pose_transform_vector(pose, ray.direction);
542
543 // transform ray into torus pose
544 int res = ray_torus_intersection(transformed_ray, large_radius, small_radius, out_t, out_normal);
545
546 // in case of intersection, transform normal back to world space
547 if(res)
548 *out_normal = pose_transform_vector(pose, *out_normal);
549
550 return res;
551}
552
553} // namespace math
554} // namespace cgv
the cgv namespace
Definition print.h:11
cgv::math::fvec< float, 2 > vec2
declare type of 2d single precision floating point vectors
Definition fvec.h:659
helper functions to work with poses that can be represented with 3x4 matrix or quaternion plus vector
fvec< T, 3 > pose_transform_vector(const fmat< T, 3, 4 > &pose, const fvec< T, 3 > &v)
transform vector with pose matrix
Definition pose.h:29
fvec< T, 3 > & pose_position(fmat< T, 3, 4 > &pose)
extract position vector from pose matrix
Definition pose.h:18
fvec< T, 3 > inverse_pose_transform_vector(const fmat< T, 3, 4 > &pose, const fvec< T, 3 > &v)
transform vector with inverse of pose matrix
Definition pose.h:35
fvec< T, 3 > inverse_pose_transform_point(const fmat< T, 3, 4 > &pose, const fvec< T, 3 > &p)
transform point with inverse of pose matrix
Definition pose.h:32