23int ray_box_intersection(
const fray<T, 3>& ray, fvec<T, 3> extent, fvec<T, 2>& out_ts, fvec<T, 3>* out_normal =
nullptr) {
24 fvec<T, 3> m = fvec<T, 3>(T(1)) / ray.direction;
25 fvec<T, 3> n = m * ray.origin;
26 fvec<T, 3> k = abs(m) * extent;
27 fvec<T, 3> t1 = -n - k;
28 fvec<T, 3> t2 = -n + k;
29 T t_near = std::max(std::max(t1.x(), t1.y()), t1.z());
30 T t_far = std::min(std::min(t2.x(), t2.y()), t2.z());
32 if(t_near > t_far || t_far < T(0))
39 *out_normal = -sign(ray.direction)
40 * step(fvec<T, 3>(t1.y(), t1.z(), t1.x()), fvec<T, 3>(t1.x(), t1.y(), t1.z()))
41 * step(fvec<T, 3>(t1.z(), t1.x(), t1.y()), fvec<T, 3>(t1.x(), t1.y(), t1.z()));
56int ray_box_intersection(
const fray<T, 3> &ray,
const fvec<T, 3> &min,
const fvec<T, 3> &max, fvec<T, 2>& out_ts) {
57 fvec<T, 3> t0 = (min - ray.origin) / ray.direction;
58 fvec<T, 3> t1 = (max - ray.origin) / ray.direction;
61 std::swap(t0.x(), t1.x());
64 std::swap(t0.y(), t1.y());
67 std::swap(t0.z(), t1.z());
69 if(t0.x() > t1.y() || t0.y() > t1.x() ||
70 t0.x() > t1.z() || t0.z() > t1.x() ||
71 t0.z() > t1.y() || t0.y() > t1.z())
74 T t_near = std::max(std::max(t0.x(), t0.y()), t0.z());
75 T t_far = std::min(std::min(t1.x(), t1.y()), t1.z());
78 std::swap(t_near, t_far);
98int ray_cylinder_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& position,
const fvec<T, 3>& axis, T radius, T& out_t, fvec<T, 3>* out_normal =
nullptr) {
99 fvec<T, 3> oc = ray.origin - position;
100 T caca = dot(axis, axis);
101 T card = dot(axis, ray.direction);
102 T caoc = dot(axis, oc);
103 T a = caca - card * card;
104 T b = caca * dot(oc, ray.direction) - caoc * card;
105 T c = caca * dot(oc, oc) - caoc * caoc - radius * radius * caca;
112 out_t = (-b - h) / a;
115 T y = caoc + out_t * card;
116 if(y > T(0) && y < caca) {
118 *out_normal = (oc + out_t * ray.direction - axis * y / caca) / radius;
123 out_t = ((y < T(0) ? T(0) : caca) - caoc) / card;
124 if(std::abs(b + a * out_t) < h) {
126 *out_normal = axis * sign(y) / caca;
145int ray_cylinder_intersection2(
const fray<T, 3>& ray,
const fvec<T, 3>& start_position,
const fvec<T, 3>& end_position, T radius, T& out_t, fvec<T, 3>* out_normal =
nullptr) {
146 return ray_cylinder_intersection(ray, start_position, end_position - start_position, radius, out_t, out_normal);
159int ray_plane_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& origin,
const fvec<T, 3>& normal, T& out_t) {
160 T denom = dot(normal, ray.direction);
161 if(std::abs(denom) < std::numeric_limits<T>::epsilon())
164 out_t = dot(origin - ray.origin, normal) / denom;
180int ray_axis_aligned_rectangle_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& position,
const fvec<T, 2>& extent,
int axis_index, T& out_t, fvec<T, 2>* out_uv =
nullptr) {
181 assert(axis_index >= 0 && axis_index < 3);
183 fvec<T, 3> normal = { T(0) };
184 normal[axis_index] = T(1);
186 T t = std::numeric_limits<T>::max();
187 if(ray_plane_intersection(ray, position, normal, t)) {
188 fvec<T, 3> intersection_position = ray.position(t);
189 intersection_position -= position;
194 uv[0] = intersection_position[1];
195 uv[1] = intersection_position[2];
198 uv[0] = intersection_position[0];
199 uv[1] = intersection_position[2];
202 uv[0] = intersection_position[0];
203 uv[1] = intersection_position[1];
209 uv += T(0.5) * extent;
211 if(uv[0] >= T(0) && uv[0] <= extent.x() && uv[1] >= T(0) && uv[1] <= extent.y()) {
214 *out_uv = uv / extent;
235int ray_parallelogram_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& origin,
const fvec<T, 3> edge_u,
const fvec<T, 3>& edge_v, T& out_t, fvec<T, 3>* out_normal =
nullptr, fvec<T, 2>* out_uv =
nullptr) {
236 fvec<T, 3> normal = normalize(cross(edge_u, edge_v));
244 T axy = edge_u.x() * edge_u.x() + edge_u.y() * edge_u.y();
245 axy *= edge_v.x() * edge_v.x() + edge_v.y() * edge_v.y();
248 T axz = edge_u.x() * edge_u.x() + edge_u.z() * edge_u.z();
249 axz *= edge_v.x() * edge_v.x() + edge_v.z() * edge_v.z();
252 T ayz = edge_u.y() * edge_u.y() + edge_u.z() * edge_u.z();
253 ayz *= edge_v.y() * edge_v.y() + edge_v.z() * edge_v.z();
260 sf = normal.z() < T(0) ? T(1) : -T(1);
265 sf = normal.x() < T(0) ? T(1) : -T(1);
272 sf = normal.y() < T(0) ? -T(1) : T(1);
277 sf = normal.x() < T(0) ? T(1) : -T(1);
281 T ndd = dot(normal, ray.direction);
282 if(std::abs(ndd) < std::numeric_limits<T>::epsilon())
285 T t = dot(normal, origin - ray.origin) / ndd;
289 fvec<T, 3> x = ray.position(t);
290 fvec<T, 2> x2d(x[ku] - origin[ku], x[kv] - origin[kv]);
292 fvec<T, 2> e1(edge_u[ku], edge_u[kv]);
293 fvec<T, 2> e2(edge_v[ku], edge_v[kv]);
295 T s = e1.x() * x2d.y() - e1.y() * x2d.x();
296 if(sf * s > -std::numeric_limits<T>::epsilon())
299 s = e2.x() * x2d.y() - e2.y() * x2d.x();
300 if(sf * s < std::numeric_limits<T>::epsilon())
305 s = e1.y() * x2d.x() - e1.x() * x2d.y();
306 if(sf * s > -std::numeric_limits<T>::epsilon())
309 s = e2.y() * x2d.x() - e2.x() * x2d.y();
310 if(sf * s < std::numeric_limits<T>::epsilon())
316 *out_normal = normal;
320 uv.x() /= length(e1);
321 uv.y() /= length(e2);
341int ray_rectangle_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& position,
const fvec<T, 2> extent,
const quaternion<T>& rotation, T& out_t, fvec<T, 3>* out_normal =
nullptr, fvec<T, 2>* out_uv =
nullptr) {
343 fvec<T, 3> tangent = { T(1), T(0), T(0) };
344 fvec<T, 3> bitangent = { T(0), T(1), T(0) };
346 tangent = rotation.apply(tangent);
347 bitangent = rotation.apply(bitangent);
349 fvec<T, 3> corner = position - T(0.5) * extent.x() * tangent - T(0.5) * extent.y() * bitangent;
351 fvec<T, 3> edge_u = extent.x() * tangent;
352 fvec<T, 3> edge_v = extent.y() * bitangent;
354 return ray_parallelogram_intersection(ray, corner, edge_u, edge_v, out_t, out_normal, out_uv);
367int ray_sphere_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& center, T radius, fvec<T, 2>& out_ts) {
368 fvec<T, 3> d = ray.origin - center;
369 T il = T(1) / dot(ray.direction, ray.direction);
370 T b = il * dot(d, ray.direction);
371 T c = il * (dot(d, d) - radius * radius);
377 if(D < std::numeric_limits<T>::epsilon()) {
400int first_ray_sphere_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& center, T radius, T& out_t, fvec<T, 3>* out_normal =
nullptr) {
402 int k = ray_sphere_intersection(ray, center, radius, ts);
404 if(k == 1 || (k == 2 && ts[0] > T(0)))
406 else if(k == 2 && ts[1] > T(0))
412 *out_normal = normalize(ray.position(out_t) - center);
428int ray_torus_intersection(
const fray<T, 3>& ray, T large_radius, T small_radius, T& out_t, fvec<T, 3>* out_normal =
nullptr) {
430 T Ra2 = large_radius * large_radius;
431 T ra2 = small_radius * small_radius;
432 T m = dot(ray.origin, ray.origin);
433 T n = dot(ray.origin, ray.direction);
434 T k = (m + Ra2 - ra2) / T(2);
436 const fvec<T, 2>& ro_xy =
reinterpret_cast<const fvec<T, 2>&
>(ray.origin);
437 const fvec<T, 2>& rd_xy =
reinterpret_cast<const fvec<T, 2>&
>(ray.direction);
438 T k2 = n * n - Ra2 * dot(rd_xy, rd_xy) + k;
439 T k1 = n * k - Ra2 * dot(rd_xy, ro_xy);
440 T k0 = k * k - Ra2 * dot(ro_xy, ro_xy);
442 if(std::abs(k3 * (k3 * k3 - k2) + k1) < T(0.01)) {
444 T tmp = k1; k1 = k3; k3 = tmp;
451 T c2 = k2 * T(2) - T(3) * k3 * k3;
452 T c1 = k3 * (k3 * k3 - k2) + k1;
453 T c0 = k3 * (k3 * (c2 + T(2) * k2) - T(8) * k1) + T(4) * k0;
458 T R = c2 * c2 * c2 - T(3) * c2 * c0 + c1 * c1;
459 T h = R * R - Q * Q * Q;
463 T v = sign(R + h) * std::pow(std::abs(R + h), T(1) / T(3));
464 T u = sign(R - h) * std::pow(std::abs(R - h), T(1) / T(3));
465 fvec<T, 2> s = fvec<T, 2>((v + u) + T(4) * c2, (v - u) * std::sqrt(T(3)));
466 T y = std::sqrt(T(0.5) * (length(s) + s.x()));
467 T x = T(0.5) * s.y() / y;
468 T r = T(2) * c1 / (x * x + y * y);
469 T t1 = x - r - k3; t1 = (po < T(0)) ? T(2) / t1 : t1;
470 T t2 = -x - r - k3; t2 = (po < T(0)) ? T(2) / t2 : t2;
472 if(t1 > T(0)) out_t = t1;
473 if(t2 > T(0)) out_t = std::min(out_t, t2);
476 fvec<T, 3> pos = ray.position(out_t);
477 *out_normal = normalize(pos * ((dot(pos, pos) - ra2) * fvec<T, 3>(T(1)) - Ra2 * fvec<T, 3>(T(1), T(1), T(-1))));
484 T w = sQ * cos(acos(-R / (sQ * Q)) / T(3));
490 T d1 = std::sqrt(d2);
491 T h1 = std::sqrt(w - T(2) * c2 + c1 / d1);
492 T h2 = std::sqrt(w - T(2) * c2 - c1 / d1);
493 T t1 = -d1 - h1 - k3; t1 = (po < T(0)) ? T(2) / t1 : t1;
494 T t2 = -d1 + h1 - k3; t2 = (po < T(0)) ? T(2) / t2 : t2;
495 T t3 = d1 - h2 - k3; t3 = (po < T(0)) ? T(2) / t3 : t3;
496 T t4 = d1 + h2 - k3; t4 = (po < T(0)) ? T(2) / t4 : t4;
498 if (t1 > T(0)) out_t = t1;
499 if (t2 > T(0)) out_t = std::min(out_t, t2);
500 if (t3 > T(0)) out_t = std::min(out_t, t3);
501 if (t4 > T(0)) out_t = std::min(out_t, t4);
504 fvec<T, 3> pos = ray.position(out_t);
505 *out_normal = normalize(pos * ((dot(pos, pos) - ra2) * fvec<T, 3>(T(1)) - Ra2 * fvec<T, 3>(T(1), T(1), T(-1))));
524int ray_torus_intersection(
const fray<T, 3>& ray,
const fvec<T, 3>& center,
const fvec<T, 3>& normal, T large_radius, T small_radius, T& out_t, fvec<T, 3>* out_normal =
nullptr) {
528 fvec<T, 3>& x =
reinterpret_cast<fvec<T, 3>&
>(pose[0]);
529 fvec<T, 3>& y =
reinterpret_cast<fvec<T, 3>&
>(pose[3]);
530 fvec<T, 3>& z =
reinterpret_cast<fvec<T, 3>&
>(pose[6]);
533 int i = std::abs(normal[0]) < std::abs(normal[1]) ? 0 : 1;
534 i = std::abs(normal[i]) < std::abs(normal[2]) ? i : 2;
536 y = normalize(cross(normal, x));
537 x = cross(y, normal);
539 fray<T, 3> transformed_ray;
544 int res = ray_torus_intersection(transformed_ray, large_radius, small_radius, out_t, out_normal);
cgv::math::fvec< float, 2 > vec2
declare type of 2d single precision floating point vectors
helper functions to work with poses that can be represented with 3x4 matrix or quaternion plus vector
fvec< T, 3 > pose_transform_vector(const fmat< T, 3, 4 > &pose, const fvec< T, 3 > &v)
transform vector with pose matrix
fvec< T, 3 > & pose_position(fmat< T, 3, 4 > &pose)
extract position vector from pose matrix
fvec< T, 3 > inverse_pose_transform_vector(const fmat< T, 3, 4 > &pose, const fvec< T, 3 > &v)
transform vector with inverse of pose matrix
fvec< T, 3 > inverse_pose_transform_point(const fmat< T, 3, 4 > &pose, const fvec< T, 3 > &p)
transform point with inverse of pose matrix